Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology Seoul, August 1, 2010

Session V: Ovarian Cancer

Molecular Targeted Therapy of Ovarian Cancer: Putative Precursor Cells, Risk Factors, and Molecular Mechanisms of its Carcinogenesis

Departments of Reproductive Medicine, Surgery and Gynecology Faculty of Life Sciences, Kumamoto University Professor and Chairman Hidetaka Katabuchi, M.D., Ph.D.

Mt. Aso and Hale-Bopp comet

Epithelial Ovarian Cancer

Ovarian cancer (204,000 cases; 4.0%) is the sixth most common cancer and the seventh cause of death from cancer in women (125,000 deaths; 4.2%).

Global Impact 2002

Parkin A et al. CA Cancer J Clin 55:74-108, 2005

Despite the development of combination chemotherapy, the relative 5-year overall survival rate of the epithelial ovarian cancers is still low because intraperitoneal metastases are already widespread in most patients.

Alteration and current status of chemotherapy for epithelial ovarian cancer

5-year survival rate according to time period and disease stage

	* 1976~1982	1983~1987	1988~1994
FIGO stage	Treatment v	vithout TXL	Treatment with TXL
	65.1%	89.6%	92.6%
II	46.1%	74.3%	70.1%
III	15.5%	29.9%	37.5%
IV	4.6%	18.0%	25.5%

*Extracted from 26th FIGO Annual Reports(1976~1982)

Trimble EL *et al. Oncology* **13**: 1068, 1999

Overall survival of patients treated at the Kumamoto University Hospital (1986~2002)

Molecular target agent discovery for various malignancies

Adaptation disease	Agent (trade name ®)	Target	
Breast cancer	Trastuzumab (Herceptin®)	HER2	
Non-small cell lung cancer	Gefitinib (Iressa [®]) Erlotinib (Tarceva [®])	EGFR	
Colon cancer	Bevacizumab (Avastin [®]) Cetuximab (Erbitux [®])	VEGF EGFR	
Chronic myelocytic leukemia GIST	Imatinib (Gleevec [®])	Bcr-Abl/c-kit	
Non-Hodgkin's lymphoma	Rituximab (Rituxan [®])	CD20	
GIST: gastrointestinal stromal tumor, VEGF: Vascular endothelial growth factor,			

Targeting angiogenesis

Mechanism and Targets	Reagents
Hypoxia-related gene expression	Anti-HIF1 α (oligonucleotide)
Sequester VEGF ligand	Bevacizumab (IgG1k humanized) Aflibercept (VEGF binding sites)
Block ligand binding to VEGFR2	IMC 1121B (Human IgG1)
Neutralization of Angiopoietin-1/2	AMG 386 peptide-Fc fusion protein
VEGF-activated endothelium	Volociximab (anti-α5β1 integrin) Combretastatin Low-dose chemotherapy
Receptor tyrosine kinases (VEGFR, FGFR, PDGFR) Convergent intracellular pathways (PI3K, MAP, AKT)	TKI (multiple small molecules)
PKC β and VEGF-mediated angiogenesis	Enzastaurin
mTOR	Rapamycin derivatives and others
Epithelial-Mesenchymal Transition (src)	Dasatinib (TKI)

Phase III trials evaluating addition of an Angiogenesis inhibitor in epithelial ovarian cancer

Agent	Group or Sponsor	Line of therapy	Primary Efficacy Endpoint (S)	Status
Bevacizumab	GOG0218	First	PFS	Reported at ASCO2010
	ICON7 (GCIG study)	First	PFS and OS	Closed
	Pharma/ AGO-OVAR16	Recurrent	PFS	Closed
BIBF	Pharma/ AGO-OVAR12	First	PFS	Active
Cediranib	ICON6 (GCIG study)	Recurrent	PFS and OS	Active
Pazopanib	Pharma	First (maintenance <i>only</i>)	PFS	Active

Phase III trial of bevacizumab in the primary treatment of advanced epithelial ovarian, primary peritoneal, or fallopian tube cancer: A Gynecologic Oncology Group (GOG) Study

> R.A. Burger,¹ M.F. Brady,² M.A. Bookman,³ J.L. Walker,⁴ H.D. Homesley,⁵ J. Fowler,⁶ B.J. Monk,⁷ B.E. Greer,⁸ M. Boente,⁹ S.X. Liang¹⁰

¹Fox Chase Cancer Center, Philadelphia, PA; ²Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY; ³University of Arizona Cancer Center, Tucson, AZ; ⁴University of Oklahoma Health Sciences Center, Oklahoma City, OK; ⁵Brody School of Medicine, Greenville, NC; ⁶James Cancer Hospital at the Ohio State University, Hilliard, OH; ⁷University of California, Irvine Medical Center, Orange, CA; ⁸Seattle Cancer Care Alliance, Seattle, WA; ⁹Minnesota Oncology and Hematology, Minneapolis, MN; ¹⁰State University of New York at Stony Brook, Stony Brook, NY, USA

GOG-0218: Schema

Front-line: Epithelial OV, PP or FT cancer

R

Α

Ν

D

0

Μ

Z E 1:1:1

 Stage III optimal (macroscopic)

Stage III
suboptimal

Stage IV

n=1800 (planned)

Stratification variables:

- GOG performance status (PS)
- Stage/debulking status

GOG-0218: Investigator-Assessed PFS

^ap-value boundary = 0.0116

GOG-0218: Overall Survival Analysis

At time of final PFS analysis

Reflections on GOG-0218 results VEGF inhibition and ovarian cancer

- Why was there no meaningful effect of bevacizumab in concurrent only arm?
 - High response rate in ovarian cancer with standard chemotherapy (70-80%), so no gain from bevacizumab?
 - Would concurrent treatment be more effective in recurrent disease where chemotherapy is less effective?
- Can gain in PFS in concurrent maintenance arm be explained by the maintenance portion only ?
 - Consider exploratory analysis of GOG-0218 patients non-progressive at end of chemotherapy.
 - RCT of pazopanib maintenance in ovarian cancer.
- Biomarkers.... more on that later

What are implications for practice or ongoing trials ?

Chaotic state in epithelial ovarian cancer study: Compared to uterine cervical and endometrial cancers

Okamura H and Katabuchi H. Int Rev Cytol 242: 1-54, 2005

Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology

Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology

Putative precursor cells of epithelial ovarian cancer

Histological classification of ovarian tumors (WHO)

Ovarian surface epithelium (OSE)

Expression products

Receptors

Katabuchi H and Okamura H. Med Electron Microsc 36: 74-86, 2003

Nakamura M et al. Hum Reprod 8: 2218-2226, 1993

Cytological properties of human OSE

Hormones	GnRH-I, -II, activin, inhibin
Sex steroids	Estrogen, progesterone
Growth factors	TGF α , TGF β , HGF, KGF
Cytokines	IL-1, IL-6, M-CSF, G-CSF, GM-CSF
Extracellular matrices	Cytokeratin, vimentin, laminin Collagen types I, II, IV
Hormones	GnRH, FSH, LH/hCG, activin
Cell adhesion molecules	N-cadherin, catenin, vitronectin
Sex steroids	Estrogen, progesterone, androgen
Growth factors	EGF,TNF α , TGF β , HGF, PDGF α , β

Histopathological findings: Transition from OSE/inclusion cyst to ovarian cancer

Early de novo ovarian cancer (Bell DA and Scully RE; 1994)

Katabuchi H et al. J Jpn Soc Gynecol Pathol Colposc 13: 162-166, 1995

Okamura H and Katabuchi H. Ital J Anat Embryol 106: 163-176, 2001

Histopathological findings: Transition from atypical endometriosis to ovarian cancer

Okamura H and Katabuchi H. Ital J Anat Embryol 106: 263-276, 2001

Incidence of endometriosis synchronous with gynecological malignancies

(1991~2000: Kumamoto university)

Incidence of ovarian cancer synchronous with ovarian endometrioma

	Cervical cancer	Endometrial cancer	Ovarian cancer
Cases	320	166	146
Age	49.6	57.2	53.3
Endometriosis	11.9%	8.2%	21.1%
Adenomyosis	11.3%	17.0%	10.0%
Myoma uteri	21.3%	28.7%	23.3%

Ovari	Ovarian endometrioma		cancer
	n	n	%
Corner <i>et al.</i> (1950)	889	3	0.3
Scully <i>et al.</i> (1966)	950	4	0.4
Fathalla <i>et al.</i> (1967)	592	4	0.7
Nishida <i>et al.</i> (2000)	147	1	0.7
Stern <i>et al.</i> (2001)	484	4	0.8
Prefumo <i>et al.</i> (2002)	339	14	4.1
Kobayashi <i>et al.</i> (2007)	6,398	46	0.7

Histopathological findings: Transition from tubal epithelium to ovarian cancer

Ovarian serous adenocarcinoma harbor concurrent tubal carcinoma

Evidence supporting the Fallopian tube as a source of ovarian/peritoneal serous carcinoma

- \Box Proximity of the fimbriae to the ovarian and peritoneal surfaces.
- □ High relative frequency of fallopian tube carcinoma, including the fimbrial end, in prophylactic salpingo-oophorectomies from BRCA+ Women.
- □ Tubal intraepithelial carcinoma(TIC) is a recognized entity in presumed primary tubal carcinomas and prophylactic salpingectomies from BRCA+ women.
- □ TIC is identified in 5 of 8 (63%) and 19 of 39 (49%) consecutive pelvic serous carcinomas classified as primary peritoneal and ovarian.
- A genetic link (p53 mutation status) between TIC and ovarian serous carcinoma.

Kindelberger DW et al. Am J Surg Pathol 31: 161-169, 2007

The leading role of the precursor cell to play in epithelial ovarian cancer is $\cdot \cdot \cdot$

Ovarian Surface Epithelium (OSE)

Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology

Risk factors of epithelial ovarian cancer

Number of deaths, by cancer site (Japan, 2007) and its risk factor

Risk factors for epithelial ovarian cancer

	Factors influencing risk	Estimated relative risk
	Older ages: Forties Seventies	3
	Residence in North America, Northern Europe	2-5
	Higher levels of education or income	1.5-2
	White race	1.5
V	Nulligravidity	2-3
\checkmark	History of infertility or use of infertility drugs	2-5
V	Early ages at menarche	1.5
\checkmark	Late ages at natural menopause	1.5-2
	History of a hysterectomy	0.5-0.7
\checkmark	Use of oral contraceptives	0.3-0.5
	Peritoneal talc exposure	1.5-2
	Female relative with epithelial ovarian cancer	3-4

Schiffman MH and Brinton LA: Blaustein's Pathology of the Female Genital Tract. 4th ed. pp1199-1223, 1994

Hypothesis of epithelial ovarian carcinogenesis

A moment of the ovulation in the rabbit

Periodical and incessant ovulation

Okamura H and Katabuchi H. Int Rev Cytol 242: 1-54, 2005

Perineal use of talc and risk of ovarian cancer

Case-control studies contributing data on perineal talc use and ovarian cancer

Langseth H et al. J Epidemiol Com Health 62: 358-360, 2008

Anatomic characteristics in woman and risk factor of ovarian cancer

Tubal sterilisation, hysterectomy and decreased risk of ovarian cancer

		Ovarian cancer	Controls	Relative risk
Tubal	without	720 (87%)	661 (77%)	1.0
sterilisation	with	104 (13%)	194 (23%)	0.61
Hystorostomy	without	708 (86%)	684 (80%)	1.0
Hysterectomy	with	114 (14%)	171 (20%)	0.64

Green A et al. Int J Cancer 71: 948 – 951, 1997

The possibility that ovarian cancer may be caused by exposure of chemical substances...

Rachel Carson has already pointed out an environmental problem by the chemical substance half a century ago.

Endocrine disruptor linked to ovarian cancer

	Dioxine	
	DDT	
	Polychlorobiphenyl (PC	CB)
	Diethylstilbestrol (DES)
	Bis Phenol A (BPA)	
	Tributyltine (TBT)	etc.

Environmental survey of chemicals in Japan

	Surface water	Bottom sediment	Aquatic wildlife	Air
4-Aminophenol	1/2*			
<i>cis</i> -1,3-Dichloropropene Dicohol		2/5	8/20	
Diphenylmethane		2/6		
Formaldehyde			2/2	
Pentachloronitrobenzene				1/15
Total	162/788	243/748	107/259	184/275

* Number of detected substances/Number of surveyed substances

Source: Report on Environmental Survey and Monitoring of Chemicals in FY2005, Ministry of the Environment

A total of 837 substances were surveyed in the past (from FY1974 to FY2004), of which 381 substances were detected in the general environment.

Factors influencing human epithelial ovarian carcinogenesis

Okamura H and Katabuchi H. Int Rev Cytol 242: 1-54, 2005

Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology

Molecular mechanisms of ovarian carcinogenesis

Isolation of human ovarian surface epithelium

Nakamura M et al. Virchow Arch 424: 59-67, 1994

Scraping Method

Ovarian surface is scraped with a surgical blade

Growth of human ovarian surface epithelium in primary culture

Precursors and molecular genetic alterations of ovarian cancer

	Histological type	Precursors	Known molecular genetic alterations
	Low-grade serous carcinoma (invasive MPSC)	Serous cystadenoma/adenofibroma Atypical proliferative serous tumor Noninvasive MPSC	BRAF and KRAS mutations (\sim 67%)
	Mucinous carcinoma	Mucinous cystadenoma Atyical proliferative mucinous tumor	KRAS mutations (>60%)
Type 1	Endometrioid carcinoma	Endometriosis Endometrioid adenofibroma Atypical proliferative endometrioid tumor	LOH or mutations in <i>PTEN</i> (20%) β-catenin gene mutations (16-54%) <i>KRAS</i> mutations (4-5%) Microsatellite instability (13-50%)
	Clear cell carcinoma	Endometriosis Clear cell adenofibroma Atypical proliferative clear cell tumor	KRAS mutations (5-16%) Microsatellite instability (\sim 13%) TGF- RII mutation (66%)
Type 2	High-grade serous carcinoma Undifferentiated carcinoma	Not yet identified	<i>p</i> 53 mutations (50-80%) Amplification and overepxression of <i>HER2/neu</i> gene(10%-20%) and <i>AKT2</i> gene (12%-18%) Inactivation of <i>p</i> 16 gene (10%-17%)
	Malignant mixed mesodermal tumor (carcinosarcomas)	Not yet identified	<i>p53</i> mutations (\sim 90%)

LOH: loss of heterozygosity

Shih IM and Kurman RJ. Am J Pathol 164: 1511-1518, 2004

An in vitro multistep model of epithelial ovarian cancer

Molecular genetic alterations in serous carcinoma

p53, K-RAS , c-myc, bcl-2, HER2/neu AKT2, BRAF, BRCA1, BRCA2

Introduction of transgenes into HOSE2C cells

Tumor formation assay in SCID mice HOSE2C-Dnp53-Kras-c-myc-bcl-2 dissemination in peritoneal cavity Intestine Liver Ovary Ovary Cytokeratin 18

Using immortalized OSE cells, we succeeded in establishment of an *in vitro* carcinogenesis model of epithelial ovarian cancers with defined genetic elements.

HOSE2C-derived carcinoma and Type 2 carcinogenesis

Sehdev AES, Sehdev PS, Kurman RJ. Am J Surg Pathol 27: 725-736, 2003

Asian Society of Gynecologic Oncology 1st International Workshop in Gynecologic Oncology

Conclusions and perspectives

Keywords in epithelial ovarian cancer research

recent studies involving the transfer of abnormal In candidate genes using immortalized ovarian surface epithelium, the tumor formation stage has been reached, but differentiation to ovarian cancer-specific tissue types has not been achieved. Further elucidation of ovarian cancerspecific precursor cells, risk factors, and the mechanisms of carcinogenesis is needed. Based on such findings, a change in our current perspective can pave the way for the development of novel molecular target therapy for epithelial ovarian cancer.

A new frontier in ovarian cancer research : Therapeutic predictions of cancer stem cell model

Extended by Professor Saya (Keio university)

- Identification of a Cancer Stem **Cell in HOSE2C Differentiation condition** DMEM/F12 with 10%FBS 500µm Stem cell condition DMEM/F12 with EGF, bFGF Serum-free Floating culture 500um
 - Sphere formation
 - · Overexpression of stem cell-associated genes OCT4 and NANOG

You are welcome to Kumamoto !!

H. Katabuchi, M.D., Ph.D., e-mail address: buchi@kumamoto-u.ac.jp

Co-workers

Departments of Reproductive Medicine and Surgery, and Gynecology, Faculty of Life Sciences, Kumamoto University, Japan Masaya Nakamura, M.D., Ph.D. Hideyuki Ohtake, M.D., Ph.D. Makoto Nitta, M.D., Ph.D. Tomoko Maeda, M.D., Ph.D. Rumi Sasaki, M.D., Ph.D. Kiyomi Takaishi, M.D. Takeshi Motohara, M.D. Ken-ichi Motohara, M.D., Ph.D. Hironori Tashiro, M.D., Ph.D., Assocoaite Professor

Institute of Molecular Embryology and Genetics, Kumamoto University, Japan Masaru Yamaizumi, M.D., Ph.D. Virology Division, National Cancer Center Research Institute, Japan Toru Kiyono, M.D., Ph.D. Division of Gene Regulation, Institute for Advanced Medical Research,

School of Medicine, Keio University, Japan

Hideyuki Saya, M.D., Ph.D Department of Pathology, University of Michigan, U.S.A. Kathy R. Cho, M.D., Ph.D.

An evening scene of Kumamoto Castle