

Laparoscopic Surgery in Early Stage Ovarian Cancer

Jae-Kwan Lee MD, PhD

Korea University College of Medicine, Seoul, Korea

Contents

Introduction

Early stage ovarian cancer Laparoscopic surgical staging in Gyn cancer

Possible advantage

EBL, Complication, Recovery

Potential disadvantage

Feasibility, Safety, Cost

Summary

Ovarian Cancer in 2012

KUMC

Worldwide

- > Incidence
 - New cases: 238,719 (6.8/100,000)
 - 8th most common in 2008 \rightarrow 7th in 2012
- Mortality
 - Deaths: 151,905 (4.3/100,000): Ranking 8th

(GLOBOCAN 2012)

In Korea

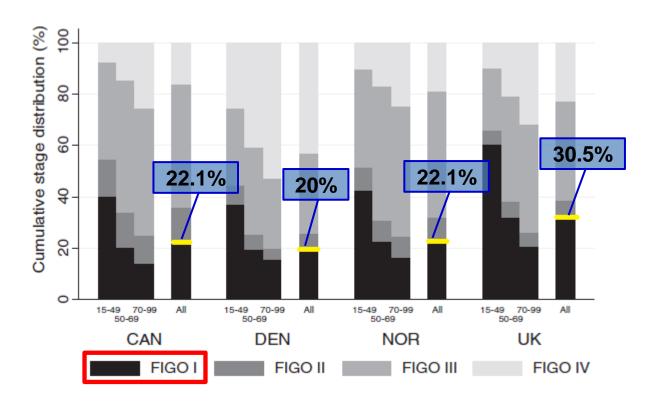
- ➤ Incidence: 8.0/100,000 (in 2011): Ranking 10th
- ➤ Mortality: 2.7/100,000: Ranking 8th

Poor Survival in Ovarian Cancer

KUMC

In a large data of 1,815,584 patients

Europe, country-weighted observed and relative survival (%), by age at diagnosis (years)


AGE 15-44 45-54 55-64 65-74 75-99 obs rel obs rel obs rel obs rel obs rel Women One year 88 89 84 83 73 60 61 35 38 Three years 74 61 60 46 33 35 23 Five years 69 70 49 50 35 37 25 28 20

All ages 15-99 obs rel 65 66 42 45 34 38

→ Just about 1/3 women are alive 5 years after diagnosis.

Distribution by stage

 Poor survival: Largely because most women are diagnosed when the cancer is already at an advanced stage.

Diagnosis in Early Stage

KUMC

- Diagnosis is usually made by accidental discovery at sonography, CT scanning or during laparoscopy.
- Incidence of accidental discovery at laparoscopy for an adnexal mass
 - ➤ 0.65% 0.9% of premenopausal women
 - ➤ 3% of postmenopausal women

Standard Management

Intention of surgical staging

- To assess the extent of the disease
- To remove as much gross tumor as possible

Surgical Treatment

- Comprehensive surgical staging
 by laparotomy, a midline abdominal incision
- Includes...
 total hysterectomy, BSO, cytology, omentectomy,
 retroperitoneal (pelvic & para-aortic) LN dissection or sampling,
 biopsy of all suspicious areas including mesentery, liver & diaphragm

Laparoscopic Surgery

Minimally Invasive Surgery:

always been a hot issue in GY era, now even in GY cancer!

Endometrial cancer

– In a meta-analysis of 8 RCTs:

"Laparoscopic approach is safer than the traditional abdominal approach with particular regard for postoperative complications."

Am J Obstet Gynecol 2012;207:94

Cervical Cancer

Recently many studies about laparoscopic radical op.

In Ovarian Malignancies

KUMC

(1) Borderline ovarian tumor

- Evidence mostly based on retrospective series suggest :
 Laparoscopic surgery in BOT seems feasible and safe.
- But, BOT is distinct from ovarian cancer
 - Excellent prognosis:
 Overall survival: 98% in stage, 92% in advanced stage
 - High proportion of early stage: stage I (50-85%)

(2) Invasive ovarian cancer

Invasive Ovarian Cancer

KUMC

(1) Laparoscopy in <u>early</u> stage

(2) Laparoscopy in <u>advanced</u> stage

- Role of laparoscopy has been primarily described in 4 areas:
 - Triage tool for resectability
 - Second-look surgical evaluation
 - Primary or secondary cytoreduction
 - Insertion of intraperitoneal catheters

J Minim Invasive Gynecol 2009;16:250

• Publ@ed 30 articles about laparoscopy in advanced ovarian cancer

Early Stage Ovarian Cancer

- Stage I ovarian cancer is a rare disease
 & laparoscopy for staging is a relatively new field of clinical study, so data are scarce.
- Laparoscopy in ovarian cancer remains controversial.
 & Unclear how the risks & benefits compare with the conventional open approach by laparotomy.
- Different guideline about standard procedure

Difference in the Guidelines

KUMC

Recent UK Guidelines

 Not consider laparoscopy as an approach to the surgical staging of early ovarian cancer

German Gynecological Oncology Group

 For selected patients & only when performed by expert laparoscopic oncology surgeons, pending further evidence

NCCN Guidelines Version 3.2014 Epithelial Ovarian Cancer/ Fallopian Tube Cancer/ Primary Peritoneal Cancer

CLINICAL → WORKUP →

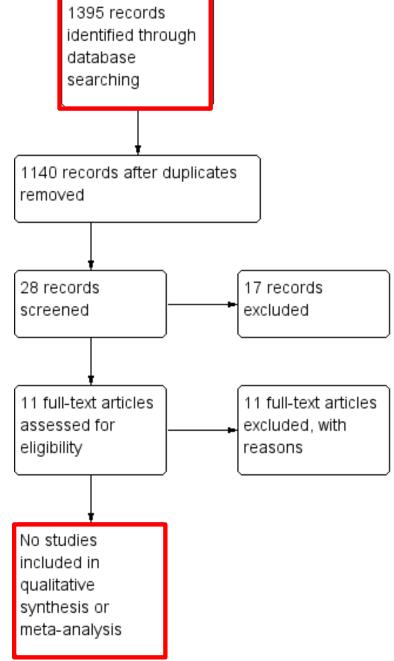
PRIMARY TREATMENT

Laparotomy/total abdominal hysterectomy (TAH)/ bilateral salpingo-oophorectomy (BSO) with comprehensive staging or unilateral salpingo-oophorectomy (USO) (clinical stage 1A or 1C, all grades with comprehensive staging if patient desires fertility)

- In most instances, a vertical midline abdominal incision <u>should</u> be used in patients with a suspected malignant ovarian.
- For select patients, a minimally invasive surgical approach may be employed by an experienced surgeon.

Current Status of Studies

First report: Querleu in 1993
 for two women with borderline ovarian tumors


• A meta-analysis (Cochrane review)

- 2008: No RCTs were identified.
 3 observational studies were identified.
- 2013: This review has found no good-quality evidence.

Meta-analysis

- 1,395 records
- None of the comparative studies reported adjusting results for baseline characteristics, considered to be at a high risk of selection bias and other bias
- Summarized the relevant case series, case-control studies, & retrospective cohort studies

Possible Advantages

KUMC

- 1. Less blood loss
- 2. Fewer complications
 - Less postoperative infection

- 3. Faster recovery
 - Shorter hospital stay, faster return of bowel function
 - Chemotherapy can be commenced sooner
 - Potentially resulting in a favorable effect on survival ?
- 4. Smaller incisions > Improve patient's satisfaction ?
- 5. Laparoscopy image can be magnified.
 - Better visualization of the tumor inside the abdomen ?

3 Case-control studies & 5 Retrospective cohort of LPS vs. open staging of early ovarian cancer

	Study	No. C	Case	Blo	od loss (ml)	Trar	nsfusion (n, %)
	period	LPS	LPT	LPS	LPT	P	LPS	LPT	P
Hua 2005	2002 -2004	10	11	280.	346	<0.05	-	-	-
Chi 2005	2000 -2003	20	30	235 🖊	367	0.003	-	-	-
Ghezzi 2007	2003 -2006	15	19	250	400	0.28	1 (6.7)	2 (10.5)	1.0
Parka 2008	2001 -2006	17	19	231 👃	505	0.001	0	2 (11)	-
Park ^b 2008	2004 -2007	19	33	240 👃	569	0.005	1 (5)	10 (30)	0.04
Park 2010*	2004 -2008	40	76	301-	494	0.004	6 (15)	23 (30)	0.071
Park 2011*	2004 -2010	84	128	207 🗸	262	<0.001	6 ↓ (13)	36 (28)	0.012
Lee 2011	2005 -2010	26	87	230 👃	475	<0.001	0 •	20 (23)	0.006

^{*}These studies are expansions of the original data set.

2. Complication

	Study	No. Case		Conversion to LPT (n)	(Pos	(Postop) Complications	
	period	LPS	LPT	LPS	LPS	LPT	P
Hua 2005	2002 -2004	10	11	-	2 (20%)	7 (72.7%)	< 0.01
Chi 2005	2000 -2003	20	30	0	0	3 (10%)	-
Ghezzi 2007	2003 -2006	15	19	0	2 (13.3%)	8 (42.1%)	0.13
Parka 2008	2001 -2006	17	19	0	0	4 (21%)	-
Park ^b 2008	2004 -2007	19	33	1	2	9	0.290
Park 2011*	2004 -2010	84	128	-	6 (7.1%)	25 (20%)	0.013
Lee 2011	2005 -2010	26	87		2	20	-

^{*}These studies are expansions of the original data set.

8 RCTs of Endometrial cancer

Intraoperative complications

Study (ref.)	N. events/N. entered		OD (C. 1 C.) 050/ CT	Weight %	OR (fixed effect) 95%CI
, ,	LS	LT	OR (fixed effect) 95%CI	9	,
Fram et <i>al.</i> (14)	1/29	4/32		3.25	0.28 (0.04 to 1.71)
Tozzi et al. (16)	1/63	1/59		0.88	0.94 (0.10 to 8.86)
Zullo et <i>al.</i> (17)	3/40	4/38		4.37	0.69 (0.10 to 4.42)
Malzoni et al. (18)	2/81	2/78		1.74	0.96 (0.17 to 5.36)
Walker et al. (21)	160/1696	69/920	į.	78.55	1.32 (1.02 to 1.72)
Mourits et al. (22)	20/185	5/94	 	3.39	1.35 (0.40 to 4.65)
Janda et <i>al.</i> (23)	14/190	8/142	_	7.81	1.31 (0.58 to 2.98)
Total	201/2284	93/1363	.	100	1.25 (0.99 to 1.56)
		0.00	1 0.01 0.1 0.2 0.5 1 2 5 10	100	

Significant advantage of laparoscopy Post-operative complications

Study (ref.)	N. events/N. e	ntered	OR (fixed effect) 95% CI	Weight %	OR (fixed effect) 95%CI
	LS	LT			
Fram et al. (14)	3/29	4/32		0.72	0.82 (0.22 to 3.06)
Zorlu et al. (15)	0/26	5/26	-	1.09	0.09 (0.00 to 0.71)
Tozzi et al. (16)	8/63	20/59		3.94	0.37 (0.18 to 0.76)
Zullo et al. (17)	11/40	18/38		3.52	0.84 (0.51 to 1.40)
Malzoni et al. (18)	29/81	26/78	<u> </u>	5.05	1.07 (0.70 to 1.65)
Walker et al. (21)	240/1696	191/920	-	65.74	0.70 (0.61 to 1.65)
Mourits et al. (22)	40/185	23/94		8.59	1.05 (0.76 to 1.46)
Janda et al. (23)	22/190	33/142		11.34	0.46 (0.31 to 0.67)
Total	353/2310	320/1389	•	100	0.71 (0.63 to 0.79)
		0.01	0.1 0.2 0.5 1 2	5 10	

3. Recovery

	Return to bowel movement (days)			Н	ospital s (days)		Time to Adj CTx (days)		
	LPS	LPT	P	LPS	LPT	P	LPS	LPT	P
Chi 2005	-	-	-	3.1	5.8	< 0.01	-	-	-
Ghezzi 2007	-	-	-	3 👃	7	0.001	-	-	-
Parka 2008	3.8 📭	2.0	<0.001	9.4 👢	14.1	0.002	11.1	14.3	0.140
Park ^b 2008	1.3 🗸	3.6	<0.001	8.9 🖊	14.5	0.002	12.8 👃	17.6	0.049
Park 2010*	1.7 👢	3.6	<0.001	7.9	14.5	0.002	15.8 🗸	20.7	<0.001
Park 2011*	1.8 🗸	3.1	<0.001	6.3 👃	13.5	<0.001	15.8 🕹	20.7	<0.001
Lee 2011	-	-	-	6.4 •	12.4	<0.001	8.5 🗣	10.3	0.007

^{*}These studies are expansions of the original data set.

Potential Disadvantages

KUMC

1. Feasibility: Technical challenge

- Longer operating time
- Longer learning curve
- Difficulty in comprehensive surgical staging
 - ➤ Particularly LND, Up-staging rate
- Higher rate of intraoperative cyst rupture & tumor spillage

2. Safety issues

- Laparoscopy-specific complications
 - ➤ Effect of CO₂ for pneumoperitoneum
 - ➤ Possibility of port-site metastases
- Insufficient survival data that guarantee the oncologic safety

3. Higher cost

1. Operating time

	Study	No. C	Case	OF	o time (m	in)
	period	LPS	LPT	LPS	LPT	P
Hua 2005	2002 -2004	10	11	298 🛨	182	<0.05
Chi 2005	2000 -2003	20	30	321 🕇	276	0.04
Ghezzi 2007	2003 -2006	15	19	377 🛨	272	0.002
Parka 2008	2001 -2006	17	19	303	290	0.706
Park ^b 2008	2004 -2007	19	33	221 👃	275	0.012
Park 2010*	2004 -2008	40	76	230 👢	278	0.001
Park 2011*	2004 -2010	84	128	207 👃	262	<0.001
Lee 2011	2005 -2010	26	87	228 🛨	184	0.016

^{*}These studies are expansions of the original data set.

Measures of the **technical feasibility** have included:

- •LN yields,
- •Size of the omental specimen,
- Intra-operative tumor spillage,
- & Operating time.

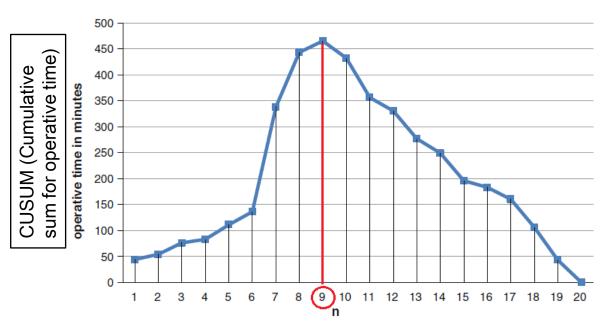
These differences reflect differences in surgeons' skills & LS techniques between investigator teams.

2. Learning curve

Endometrial cancer

THE JOURNAL OF
MINIMALLY INVASIVE
GYNECOLOGY

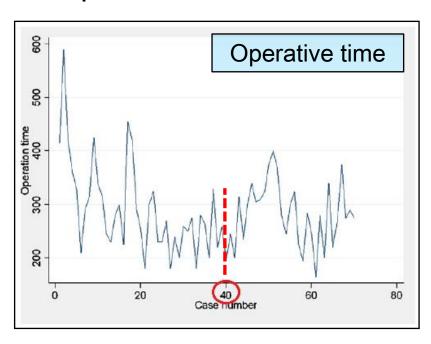
Variable	Traditional total abdominal	Robotic-assisted	Laparoscopic	p Value
	n=56	n=36	n=56	
Operating time, min	136.9 (32.3)	162.5 (53.0)	192.3 (55.5)	<.001
Estimated blood loss, mL	266.0 (145.1)	89.3 (45.4)	209.1 (91.8)	<.001
No. of lymph nodes retrieved				
Pelvic	30.8 (14.0)	19.2 (7.9)	24.1 (11.8)	<.001
Para-aortic	25.0 (13.7)	12.9 (7.6)	20.9 (12.1)	<.001

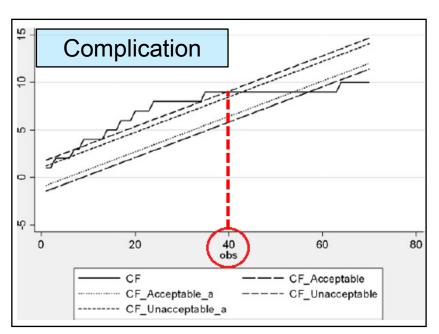

	Case 1-20	Case 21-40	Case 41-56		
Procedure	Mean (SD)	Mean (SD)	Mean (SD)	p Value	
Operating time					
Traditional abdominal hysterectomy	139.7 (33.5)	133.3 (31.5)	NA	.56	
Robotic-assisted hysterectomy	183.2 (69.0)	152.7 (39.8)	148.8 (36.7)	.09	
Laparoscopic hysterectomy	196.7 (32.4)	181.4 (49.0)	200.9 (83.3)	.54	
Pelvic lymph node retrieval					
Traditional abdominal hysterectomy	29.3 (15.6)	32.8 (12.2)	NA	.56	
Robotic-assisted hysterectomy	18.0 (6.9)	22.2 (7.8)	17.2 (8.5)	.12	
Laparoscopic hysterectomy	20.6 (9.7)	22.9 (11.6)	30.6 (12.7)	.03	
Para-aortic lymph node retrieval					
Traditional abdominal hysterectomy	23.6 (15.0)	26.8 (12.2)	NA	.50	
Robotic-assisted hysterectomy	12.8 (7.1)	16.2 (7.9)	10.2 (8.7)	.47	
Laparoscopic hysterectomy	15.8 (7.2)	20.8 (11.1)	28.0 (15.5)	.01	

• The learning curve of LS staging surgery seems to be more difficult than that of open surgery, even than robotic surgery.

Then, how many cases are enough?

GYNECOLOGIC ONCOLOGY


Arch Gynecol Obstet (2013) 288:635-642



- 20 patients
 with LS hysterectomy
 and PLND (±PALNS)
 for early cancer
 - : 13 cervical
 - & 7 endometrial

 After a learning curve of 9 patients, a relevant improvement at least regarding the duration of the operation can be achieved.

• 70 patients with LS RH and PLND for early cervical cancer

- An extended learning period is required for LRHND.
- After a learning curve of 40 cases, the surgeon may achieve
 a higher level of competence.
 Hwang et al.

26

3. Adequacy of staging

Comprehensive Surgical Staging

KUMC

Meta-analysis of 4 RCTs in early ovarian cancer

- Benefits of adjuvant platinum-based chemotherapy
 - OS: HR 0.71; 95% CI 0.53 to 0.93
 - PFS: HR 0.67; 95% CI 0.53 to 0.84
- But, optimally staged women <u>were unlikely to benefit from</u> adjuvant chemotherapy.
- So, adjuvant chemotherapy is indicated when staging is considered to be inadequate.
- Hence, comprehensive surgical staging has an important impact on the subsequent management

Lymph Node Dissection/Sampling

	Pelvic lymph Nodes (n)			Para	Para-aortic nodes (n)			Omental specimen (cm³)		
	LPS	LPT	P	LPS	LPT	P	LPS	LPT	Р	
Hua 2005	25	27	NS	-	-	-	-	-	-	
Chi 2005	12.3	14.7	NS	6.7	9.2	NS	186	347	0.09	
Ghezzi 2007	25.2	25.1	0.96	6.5	7	0.78	-	-	-	
Parka 2008	13.7	19.3	0.052	8.9	6.4	0.187	-	-	-	
Park ^b 2008	27.2	33.9	0.079	6.6	8.8	0.324	160	274	0.113	
Park 2010*	-	-	NS	-	-	NS	-	-	NS	
Park 2011*	-	-	NS	-	-	NS	-	-	NS	
Lee 2011	23.5	22.8	0.867	9.9 📤	4.8	0.003	1	-	-	

Similar between LPS vs. LPT,
 but, the result can be different according to the surgeon's skill as well as intention to achieve complete LND.

- But, Systematic retroperitoneal LND is <u>not uniformly</u> considered a standard staging procedure in all centers.
 - Because therapeutic effect of LND in women with early stage ovarian cancer is still debated, and associated risks and cost effectiveness.

Ex) In UK, NICE (National Institute for Health and Clinical Excellence) guideline

"Do not include systematic LND

as part of standard treatment in suspected stage I ovarian cancer"

- If a palpable abnormality, sampling from PLN ± PALN
- If there is no palpable abnormality, random sampling

Limitation on Lymphadenectomy

- But, palpation?
- : It is an inherent shortcoming of laparoscopy...
 - Inability to palpate LN & other peritoneal surfaces
- However, intraoperative direct visualization and evaluation of nodes by palpation is inherently subjective.

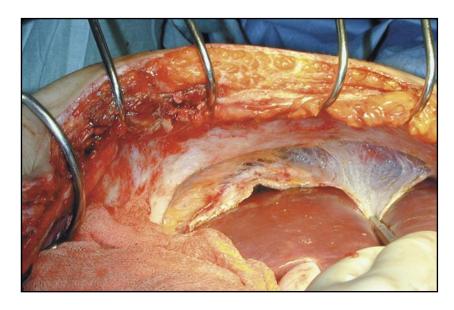
Accuracy of Lymph Node Palpation for Each Surgeon Based on Years of Experience

Surgeon	N	TN	TP	FN	FP	Sens	Spec	PPV	NPV	Years exp
1	32	20	8	1	3	88%	87%	72%	95%	13
2	28	14	6	3	5	67%	74%	55%	82%	7
3							81%			8
Total	126	76	23	9	18	72%	81%	56%	89%	

Conclusion. LN palpation has low sensitivity & positive predictive value even when done by experienced GY oncologists.

Upstaging Rate

- LN yield & upstaging rate
 - : Potentially used as a surrogate marker for adequacy of staging
- But, the means of radiological assessment of metastasis prior to LS staging is variable within previously published studies.


	Study	No. Case		Tun	nor upstag n (%)	Final diagnosis = stage l (n, %)		
	period	LPS	LPT	LPS	LPT	P	LPS	LPT
Hua 2005	2002 -2004	10	11	0	0	-	10 (100)	11 (100)
Ghezzi 2007	2003 -2006	15	19	4 (26.7)	6 (31.6)	1.0	11 (73.3)	13 (68.4)
Parka 2008	2001 -2006	17	19	1 (5.9)	6 (31.6)	0.092	16 (94.1)	13 (68.4)
Park ^b 2008	2004 -2007	19	33	4 (21)	7 (21.2)	0.936	15 (78.9)	26 (78.8)
Lee 2011	2005 -2010	26	87	1 (3.8)	5 (5.7)	0.212	25 (96.2)	82 (94.3)

Better Visualization due to Magnification

KUMC

- But, limitation on examination of these part:
 - Diaphragmatic peritoneum behind the liver & spleen, liver dome
 - Although isolated metastases to these areas are rare

*Picture: The Trocar (Official OnLine Video Journal of ISGE)

Learning curve and pitfalls of a laparoscopic score to describe peritoneal carcinosis in advanced ovarian cancer

Prospective study in advanced ovarian cancer
 Estimated the agreement
 between a fellow in training & a senior surgeon
 performing a LS score to describe peritoneal carcinosis

Parameter	Higher evaluation No. of cases	Lower evaluation No. of cases	Not evaluable No. of cases	Cohen's kappa	Disagreement (%)
Bowel infiltration	4	5	3	0.70	13.3
Mesenteral retraction	2	5	3	0.70	11.1
Omental cake	3	3	2	0.81	8.8
Stomach infiltration	2	1	5	0.84	8.8
Liver metastases	1	2	1	0.78	4.4
Diaphragmatic carcinosis	2	1	1	0.88	4.4
Peritoneal carcinosis	1	0	0	0.96	1.1

5. Tumor rupture

The clinical impact of intraoperative tumor rupture is still debated.

KUMC

 Laparoscopy has been associated with a higher rate of cyst rupture for apparently benign and borderline tumors

Ann Oncol 2005;16:403

- Intraoperative rupture of stage I ovarian cancer tumor
 - May result in upstaging from stage la or 1b to lc
 - The most powerful prognostic indicators of DFS in stage
 - Grade & tumor rupture (HR: 2.65, 95% CI: 1.53-4.56)

Lancet 2001;20:176

	Study period	No. Case		Tumor size (cm)			Intra-operative tumor spillage, n (%)		
		LPS	LPT	LPS	LPT	P	LPS	LPT	P
Hua 2005	2002 -2004	10	11				0	0	-
Ghezzi 2007	2003 -2006	15	19				3 (20)	2 (10.5)	0.63
Park ^a 2008	2001 -2006	17	19	4.0	4.5	0.618	0	0	-
Park ^b 2008	2004 -2007	19	33	8.9	11.0	0.254	2 (10.5)	4 (12.1)	1.000
Park 2010*	2004 -2008	40	76	-	-	-	-	-	NS
Park 2011*	2004 -2010	84	128	-	-	-	-	-	NS
Lee 2011	2005 -2010	26	87	9.1 🎩	14.0	0.010	0 1	13 (14.9)	0.037

To properly assess these outcomes, future studies should clarify:
 Clear description of technique & adjusting other factors (e.g. tumor size)

6. CO₂ pneumoperitoneum

Whether it enhances wound recurrence remains unclear.

KUMC

Possible mechanisms:

CO₂ has been shown to lower the peritoneal pH,
 which may activate enzymes that increase tumor cell
 mitosis & growth factor production.

Surg Endosc 2008;22:359

- Mechanical damage to the mesothelium
- Mechanical pressure to disseminate the cancer cells

Cancer 1999;86:770

Stimulate port-site metastasis

- A recent meta-analysis: 20 RCTs involving 1,229 animals
- Wound recurrence rate
 - Laparoscopy vs. Gasless laparoscopy
 - OR: 2.23, 95 % CI: 0.90–5.55, P=0.08
 - Laparoscopy vs. Laparotomy
 - OR: 0.97, 95 % CI: 0.31–3.00, P=0.08
 - Laparoscopy vs. (Gasless laparoscopy + Laparotomy)
 - OR:1.47, 95 % CI, 0.74–2.92; P=0.28
 - CDP is not responsible for these tumors.

- First report of port-site metastases:
 - Found in a patient with ovarian cancer in 1978

Endoscopy 1978;10:127-30

- Port-site recurrence rate after laparoscopy: 1-16%
 - 1.96% in 796 women with ov/tubal/peritoneal ca by Zivanovic et al.
 - Comparable rate to laparotomy

Gynecol Oncol 2008;111:431–7

- Maybe technique-related & limited mostly to advanced stage
 - Nearly no case of port-site metastasis in stage I
 - Suggested method to prevent:
 - (1) Using an endoscopic bag to retrieve intact specimens
 - (2) A layered closure of the trocar site

8. Oncological outcome - Survival

	Median F/U (mo, range)		PFS (n, %)		OS (n, %)			
	LPS	LPT	LPS	LPT	P	LPS	LPT	Р
Ghezzi 2007	16 (4-34)	60 (32-108)	15 (100)	15 (78.9)	-	15 (100)	19 (100)	-
Park ^a 2008	19 (5-56)	14 (5-61)	15 (88)	19 (100)	-	16 (94)	19 (100)	-
Park ^b 2008	17 (2-40)	23 (1-44)	19 (100)	33 (100)	-	19 (100)	33 (100)	-
Park 2010*	-	-	37 (92)	71 (93)	0.876	38 (96)	71 (94)	0.841
Park 2011*	-	-	66 (78)	100 (78)	0.873	75 (89)	110 (86)	0.731
Lee 2011	12 (1-42)	25 (1-74)	26 (100)	79 (91)	0.195	-	-	-

<Average rate of
survival in ov ca>

FIGO	OS (%)				
stage	1Y	2Y	5Y		
IA	98.4	96.2	89.6		
IB	100	93.9	86.1		
IC	96.3	91.4	83.4		

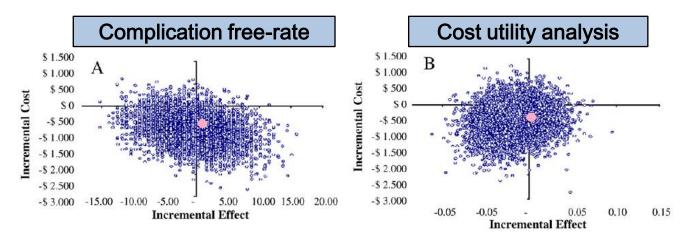
Int J Gynaecol Obstet 2006; 95:S161 * Case number: IA (632), IB (69), IC (72)

Survival Outcome

- Laparoscopic surgery for early stage ovarian cancer seems safe
 - with similar rate of tumor recurrence & overall survival compared to laparotomy.
- But, the available survival data have very low quality, hence it is not possible draw any conclusions regarding the relative effect of laparoscopic staging on ovarian cancer survival from the existing literature.

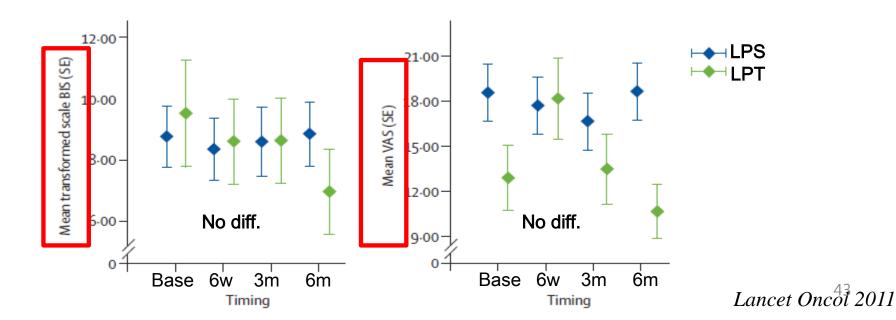
Staging in Early Ovarian Cancer

KUMC


				$\Gamma \cap \Gamma$
Variables	Laparoscopy Group (n = 26)	Laparotomy Group (n = 87)	P	
Total hospital costs	9893 (3681)	8218 (3354)	0.031	Hospital stay (mean)
Charge for stay	438 (87)	638 (183)	<0.001	6.4 days in LPS vs.
Average operative cost	1998 (678)	1237 (465)	< 0.001	12.4 days in LPT
Disposable instrument cost	1320 (452)	544 (276)	< 0.001	(p<0.001)
Instrument depreciation cost	58	16	< 0.001	
Direct material cost	1469 (503)	340 (173)	< 0.001	
Labor cost	917 (426)	603 (200)	0.016	

Values are given as median (range) in US dollars.

- Operation costs for LPS were significantly higher.
- Where bed costs are higher, this difference in cost might be eliminated.


Cost effectiveness in EM ca

- Multi-center RCT: 279 patients (TLH n=185 vs. TAH n=94)
- Previous perception:
 - LPS is more costly than open procedures.
 - A major reason for the slow acceptance of LPS

- Conclusion: LPS appears to be preferable over LPT
 as \$52 will be saved per additional major complication-free patient.
- Higher costs were compensated by the lower costs for hospital stay.

- QoL can be assessed with various indicators.
 - Body image scale, pain score, role-physical score, physical functioning, role-emotional score, social functioning, mental health, etc.
- EM ca: RCT showed that the summed QoL dimensions did not differ between LPS vs. LPT.

Retrospective, 28 cases with EM & Cx cancer

First 9	"Laparoscopy" group				
cases	Phase 1 Phase 2 "Open" group n (%) n (%)			Phase 1 versus "open" group	Phase 2 versus "open" group
Post-operation pain	Fire	st 9	ater 11	0.4	0.01
Until 1 week	4 (44) cas	ses (72.7)	cases 3.1)		
Until 1 month	3 (33)	3 (27.3)	14 (53.8)		
Until 1 year	2 (22)	0	6 (23.1)		
Pain strength				0.3	0.001
0–3	5 (55.5)	10 (90.9)	7 (26.9)		
4–6	3 (33)	0	12 (46.2)		
7–9	1 (11)	1 (9.1)	7 (26.9)		
Return to normal life in				0.3	0.003
2 weeks	0	8 (72.7)	3 (11.5)		
4 weeks	4 (44)	1 (9.1)	5 (19.2)		
6 weeks	2 (22)	1 (9.1)	11 (42.3)		
>6 weeks	3 (33)	1 (9.1)	7 (26.9)		
Cosmetic satisfaction				0.007	0.03
High	6 (66.7)	6 (54.5)	4 (15.4)		
Fair	3 (33)	4 (36.4)	12 (46.2)		
Low	0	1 (9.1)	10 (38.5)		44

- Retrospective, 113 Early Ovarian Cancer
 - Postoperative pain score were lower in the LS group.

	Laparoscopy Group (n = 26)	Laparotomy Group (n = 87)	P
Port number, mean ± SD, n	3.2 ± 1.6		
Pain at 6 hours, median (range), score	5 (3–8)	6 (4–8)	<0.001
Pain on day 1	3 (1–6)	4 (3–5)	0.002
Pain on day 2	2 (1–6)	3 (2–4)	0.001
LNs, lymph nodes.			

Summary

- Laparoscopic staging surgery for early stage ovarian cancer
 - Advantages of minimally invasive surgery in surgical outcomes
 ; lower blood loss, faster recovery
 - Feasible, but wide regional variation in the skills, slow learning curve
 - Operative time is not longer, when performed by expert surgeons.
 - Potential imitation in visualization
 - Safe, but large well-designed data is lacking, especially for survival
 - More costly, but more cost-effective, considering lower post-operative complications & shorter hospital stay
 - Higher quality of life in terms of better cosmesis & less pain

Further Studies

- In endometrial cancer, a meta-analysis of RCTs demonstrated that laparoscopy is feasible & safe.
 - It is possible that similar conclusions, in time, for stage I ovarian cancer
 although the evidence for this is not currently enough.

Future studies

- Subgroup according to LN dissection or sampling
- Detailed outcomes: OS, PFS, patient satisfaction, quality of life, costs, complications (intra-, post-operative), use of adjuvant chemotherapy
- Major barrier to conducting RCTs
 - Recruiting sufficient numbers of participants
 - Standardizing the quality of the surgery & skill of the surgeons

Laparoscopy-related Trials

KUMC

Protocol	Title			
KGOG 3028	Retrospective-Laparoscopic Surgery in Epithelial Ovarian Cancer	Active		
LACC = KGOG 1031	A Phase III Randomized Clinical Trial of Laparoscopic or Robotic Radical Hysterectomy versus Abdominal Radical Hysterectomy in Patients with Early Stage Cervical Cancer	Active		
GOG-LAP2	Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer	2011		
GOG-9402	Laparoscopic staging in patients with incompletely staged cancers of the uterus , ovary, fallopian tube, and primary peritoneum	2007		
GOG-9206	Feasibility of laparoscopic management of presumed stage I endometrial carcin oma and assessment of accuracy of myoinvasion estimates by frozen section	2006		
GOG-9207	Laparoscopic retroperitoneal lymphadenectomy followed by immediate laparoto my for women with cervical cancer	2004		

Thank you for you attention.

